Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
C(c(z, y, a), a, a) → B(z, y)
B(z, b(c(a, y, a), f(f(x)))) → C(y, a, z)
F(c(x, y, z)) → C(z, f(b(y, z)), a)
F(c(x, y, z)) → B(y, z)
B(z, b(c(a, y, a), f(f(x)))) → C(c(y, a, z), z, x)
F(c(x, y, z)) → F(b(y, z))
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
C(c(z, y, a), a, a) → B(z, y)
B(z, b(c(a, y, a), f(f(x)))) → C(y, a, z)
F(c(x, y, z)) → C(z, f(b(y, z)), a)
F(c(x, y, z)) → B(y, z)
B(z, b(c(a, y, a), f(f(x)))) → C(c(y, a, z), z, x)
F(c(x, y, z)) → F(b(y, z))
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
C(c(z, y, a), a, a) → B(z, y)
B(z, b(c(a, y, a), f(f(x)))) → C(y, a, z)
B(z, b(c(a, y, a), f(f(x)))) → C(c(y, a, z), z, x)
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
B(z, b(c(a, y, a), f(f(x)))) → C(y, a, z)
B(z, b(c(a, y, a), f(f(x)))) → C(c(y, a, z), z, x)
The remaining pairs can at least be oriented weakly.
C(c(z, y, a), a, a) → B(z, y)
Used ordering: Polynomial interpretation [25]:
POL(B(x1, x2)) = x1 + x2
POL(C(x1, x2, x3)) = x1
POL(a) = 1
POL(b(x1, x2)) = x1 + x2
POL(c(x1, x2, x3)) = x1 + x2
POL(f(x1)) = 1
The following usable rules [17] were oriented:
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
c(c(z, y, a), a, a) → b(z, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
C(c(z, y, a), a, a) → B(z, y)
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F(c(x, y, z)) → F(b(y, z))
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
F(c(x, y, z)) → F(b(y, z))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( b(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( c(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
c(c(z, y, a), a, a) → b(z, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
c(c(z, y, a), a, a) → b(z, y)
f(c(x, y, z)) → c(z, f(b(y, z)), a)
b(z, b(c(a, y, a), f(f(x)))) → c(c(y, a, z), z, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.